Electrochemical Synthesis of Niobium-Hafnium Coatings in Molten Salts

Sergey A. Kuznetsov and Svetlana V. Kuznetsova

Institute of Chemistry, Kola Science Centre RAS, 14 Fersman Str., 184209 Apatity, Murmansk Region, Russia

Reprint requests to Prof. S. A. K.; Fax: +7 815 55 61658; E-mail: kuznet@chemy.kolasc.net.ru

Z. Naturforsch. **62a**, 425 – 430 (2007); received March 20, 2007

Presented at the EUCHEM Conference on Molten Salts and Ionic Liquids, Hammamet, Tunisia, September 16 – 22, 2006.

Graphite is widely used in technology because of its unique properties. A drawback of graphite is its low heat resistance in oxidizing atmospheres. To increase its heat resistance, Nb-Hf protective coatings were synthesized. Electrodeposition of niobium coatings on graphite with subsequent precise surface alloying of niobium with hafnium was studied. Electrochemical synthesis of Nb-Hf coatings from molten salt systems containing compounds of niobium and hafnium was used too. It was shown that Nb-Hf coatings with a planar growing front can be obtained if the concentration and therefore the limiting current density of the more electropositive component Nb is kept low. Nb-Hf coatings with a thickness of $20-30~\mu m$ have been obtained in this way from an NaCl-KCl-K₂NbF₇ (1 wt%)-K₂HfF₆ (10 wt%)-NaF (5 wt%) melt, above the limiting current density of niobium deposition.

Key words: Graphite-Based Compositions; Heat Resistance; Protective Coatings; Precise Surface Alloying; Electrochemical Synthesis.